Σύμφωνα με μια νέα δημοσίευση που έγινε στο BBC NEWS, οι επιστήμονες που δουλεύουν με την τεχνητή νοημοσύνη (AI) θα μπορούσαν να μειώσουν το χρόνο που απαιτείται για την ανάπτυξη νέων φαρμάκων - και, βασικά, το κόστος.
«Η ανάπτυξη φαρμακευτικών σκευασμάτων είναι μια πολύ δαπανηρή και χρονοβόρα επιχείρηση. Και όπως διαπίστωσε και η AstraZeneca την περασμένη εβδομάδα, απογοητευτικές δοκιμές φαρμάκων μπορούν να μειώσουν την χρηματιστηριακή αξία στην αγορά εντελώς απρόσμενα. Έτσι, όσο πιο γρήγορα μπορούμε να εντοπίσουμε ελπιδοφόρα μόρια που θα μπορούσαν να μετατραπούν σε βιώσιμα φάρμακα, τόσο το καλύτερο».
Αυτός είναι ο λόγος για τον οποίο οι φαρμακευτικές εταιρείες, όπως η GlaxoSmithKline (GSK), η Merck, η Sanofi και η Johnson & Johnson, στρέφονται τώρα στην τεχνητή νοημοσύνη (AI) για περαιτέρω βοήθεια ως προς την ανάπτυξη νέων φαρμάκων.
Ο καθηγητής Andrew Hopkins, Διευθύνων Σύμβουλος της Exscientia, μιας πρωτοποριακής εταιρείας που ειδικεύεται στην ανακάλυψη φαρμάκων με τη βοήθεια της τεχνητής νοημοσύνης (Al) και η οποία έχει υπογράψει πρόσφατα συμφωνία ύψους 33 εκατομμυρίων λιρών με την GSK, για την ανακάλυψη νέων εκλεκτικών μορίων για τη θεραπεία πολλαπλών στόχων, αναφέρει ότι η τεχνητή νοημοσύνη (Al) και οι επιστήμονες που εργάζονται μαζί στις λεγόμενες "ομάδες κέντρου" μπορούν να βοηθήσουν στην ταυτοποίηση των υποψήφιων μορίων σε ένα τέταρτο της συνηθισμένης ώρας και στο ένα τέταρτο του κόστους.
Αναφερόμενος στην προσφορά της τεχνητής νοημοσύνης στην επιστήμη, ο Prof. Hopkins, έφερε ως παράδειγμα την ελληνική μυθολογία, λέγοντας ότι ο κένταυρος ήταν μισός άνθρωπος και μισός άλογο, με αποτέλεσμα να είναι πολύ ισχυρός και γρήγορος. Κάπως έτσι και η τεχνητή νοημοσύνη (AI) δίνει στους επιστήμονες τέτοιες πρόσθετες δυνάμεις.
Η επιτυχής ανακάλυψη φαρμάκων βασίζεται στην ακριβή κατανόηση του τρόπου με τον οποίο μια ασθένεια επηρεάζει τα βιολογικά μας συστήματα, λέει η Pamela Spence, ηγέτης της παγκόσμιας βιομηχανίας βιοεπιστημών στη συμβουλευτική εταιρεία Ernst & Young Global Limited (EY). «Μόλις αυτό γίνει γνωστό, οι επιστήμονες αναζητούν μόρια που μπορούν να αλληλεπιδρούν επιλεκτικά με αυτό το "στόχο” και να αντιστρέψουν αυτή τη διακοπή ή να επιβραδύνουν τον αντίκτυπό της με μία έξτρα "δύναμη”, εξηγεί.
Οι επιστήμονες συχνά μιλούν για μια ασθένεια ως στόχο και το μόριο ως όπλο που εκτοξεύεται. Ωστόσο, αυτή η διαδικασία ανίχνευσης φαρμάκων - παραδοσιακά πραγματοποιούμενη από μικρές ομάδες επιστημόνων που δοκιμάζουν προσεκτικά κάθε πιθανό στόχο και χτυπούν το μόριο με την ελπίδα να βρουν νικητή - είναι μια τεράστια χρονοβόρα προσέγγιση που έχει επίσης πολύ υψηλό ποσοστό αποτυχίας.
«Ως εκ τούτου, με τη βοήθεια της τεχνητής νοημοσύνης έχουν έναν βοηθό στην έρευνα τους που μπορεί να λύσει προβλήματα με συστηματική και αδυσώπητη αναζήτηση σε απίστευτες ταχύτητες», συμπληρώνει. Αυτό μπορεί να λειτουργήσει ή όχι , αλλά μπορεί να εντοπιστεί άμεσα από τον υπερ-υπολογιστή τεχνητής νοημοσύνης (AI) " in silico". Αυτός είναι ο ιατρικός όρος για την έρευνα που διεξάγεται από τον υπολογιστή, σε αντίθεση με τους δοκιμαστικούς σωλήνες "in vitro" και "in vivo" με δοκιμές σε ζώα και ανθρώπους.
«Δεδομένου ότι η πραγματοποίηση ανθρώπινων κλινικών δοκιμών αποτελεί τον τεράστιο όγκο του κόστους ανακάλυψης φαρμάκων, όσο πιο γρήγορα μπορούμε να εντοπίσουμε πότε κάτι δεν πρόκειται να λειτουργήσει, τόσο λιγότερα χρήματα θα χαθούν» όπως επισημαίνει η κ. Spence. «Στη συνέχεια, οι φυσικές δοκιμές μπορούν να γίνουν με μικρότερο αριθμό πιθανών νέων φαρμάκων και μπορεί, να επιτευχθεί πολύ υψηλότερο ποσοστό επιτυχίας», όπως λέει.
ΠΗΓΗ: ΝΑΥΤΕΜΠΟΡΙΚΗ